

Unit 4:
Chemical
Bonding &
Molecules
(Chapter 6 in book)

"Perhaps one of you gentlemen would mind telling me just what it is outside the window that you find so attractive..?"

Chemical Bonding

pgs.161-182

Chemical Bonds

- □ Attraction between the *nuclei* and *valence electrons* of different atoms that "glues" the atoms together.
 - □ the difference between materials as diverse as diamonds and pencils is how they're glued together.
- □ Why?
 - ☐ Bonded atoms are more stable than solo atoms
- ☐ How?
 - ☐ Atoms will share or exchange valence electrons to achieve a full outer shell (usually octet).

3 Main Types of Bonds

<u>Ionic Bonds</u> - Transfer of electrons between atoms

- electrical attraction between cations & anions
- Formed by: metals & non-metals

<u>Covalent Bonds</u> - sharing of electrons between atoms

- "co" = sharing, "valent" = outer electrons
- Formed by: non-metals & non-metals

Metallic Bonds - Metal atoms that share a "sea of electrons"

Formed by: metals & metals

Predicting Bond Types

- Bonding is not usually purely ionic or covalent, but somewhere in between
- The difference in *electronegativity* strength of the atoms in a bond can help us estimate what percentage of the bond will be ionic

(see example on next slide)

Using the Periodic Table to Determine Bond Types

Ionic bond=

- metal (weak) & non-metal (strong)
- huge difference in strength (1.7 or more)

Metallic Bond =

2 Metals (both weak)

<u>Covalent</u> bond =

- 2 non-metals (strong)
- close to same strength

Summary: Ionic Bonds vs. Covalent Bonds

<u>Ionic</u>	Covalent
Electrons are Transferred (become charged ions that are attracted)	Electrons are shared
Metal + non-metal (ex: Li + K)	2 non-metals (O + O or O + N)
One atom is a lot higher electronegativity than the other (1.7)	Close to equal electronegativities (less than 1.7)

Lewis Dot Structures

Octet Rule

- Most* atom wants to have 8 electrons in their valence shell (outermost shell)
- Chemical compounds form so that each atom can complete their octet by gaining, losing or sharing electrons
- *Exceptions =
 - H & He (they only want 2 electrons in their valence shell)
 - B (forms bonds so it will have only 6 electrons)
 - F, O & Cl (will sometimes be surrounded by more than 8 electrons because they are so electronegative)

Lewis Dot Structure

 Picture showing how many valence electrons an atom has (dots).

·Helps determine how atoms will bond.

Ex: Phosphorus (has 5 valence electrons)

Lewis Dot Structures for Ionic Compounds

 A way to show how atoms achieve the octet with each other.

Note:

- the transfer of the electron
- the charges ions that result

$$[Na]^+ \begin{bmatrix} \vdots \overset{\times}{C} \overset{\times}{I} \overset{\times}{\times} \end{bmatrix}^-$$

This is how we draw it

Lewis Dot Structures for Covalent Molecules

Or

2 ways to show:

- With electrons being shared in between
- Line showing the sharing of pair of electrons

3 Bonds Types in More Depth

Covalent Bonds

 Result from the sharing of electron pairs between two atoms

 Molecule = termed used to describe atoms are held together by covalent bonds The electrons experience a force of attraction from both nuclei. This negative - positive - negative attraction holds the two particles together

This attraction is called a chemical bond one pair of electrons constitutes ONE bond

Covalent Bonds

- Occurs between 2 non-metals
- electrons are shared
- •2 types of covalent bonds: Polar and non-polar (to be discussed later)
- Ex: Water & most biological molecules (sugars, fats, proteins)
- Can form single, double, or triple bonds

Electron from carbon

Ionic Bonds

·Forms between:

Metal + Non-Metal

•Electrons are transferred

Ionic Bonds (cont.)

Ex:
$$K \cdot : C1: \longrightarrow K^+ : C1:]^-$$

Electroneg= .8 Electroneg= 3.0

- Cl is so much stronger that it will "take" K's electron
 - ■The transfer of electron causes K to be a <u>cation (+)</u> and Cl to be an <u>anion (-)</u>.
 - Oppositely charged particles are highly attracted to each other... Ionic bond!

Characteristics of Ionic Compounds

- Shape- <u>crystal lattice</u> of alternating positive and negative ions
- Ex: NaCl and salts
- Ionic bonds are <u>strong</u> so they are:
 - hard
 - have a high melting point
 - high boiling point

Crystal Lattice

Metallic Bonds- "sea of electrons"

- Forms between 2 metals
- Metal atoms valence electrons overlap creating a "sea of electrons".

- ·Electrons do not belong to any one atom, but roam freely throughout the metal atoms
- ·Ex: Brass (alloy of Cu + Zn)

Metallic Characteristics

- Because of these roaming "sea" of electrons:
 - metals are great conductors of heat/ electricity
 - they are <u>ductile</u> (can be made into wire)
 - they are <u>malleable</u> (can be hammered into sheets)

Electrical Conductivity

Properties & Bonding Type

pgs.161-182

Comparison	Covalent	Ionic Bonds	Metallic Bonds		
Formation					
Types of Atoms	Non-metal & non-metal	Non-metal & metal	Metal & metal		
Electron Distribution	Shared	Transferred	Sea of electrons		
Characteristics					
Bond Strength	Strong	Very strong	Varies		
Structure	Neutral group	Crystal lattice	crystalline		
Properties of Compounds					
Type of Compound	Molecular	Ionic	metallic		
Melting Point	Low	Very high	n/a		
Boiling Point	Low	High	Very high		
Malleability	n/a	Not malleable, brittle	Very malleable		
Ductility	n/a	Not ductile	Very ductile		
Conductivity	Not conductive	Conductive	Highly conductive		

Bond Energy & Bond Length

Bond Energy-energy required to break bond

	Bond Length	Bond Energy
Single Bond		Low
Double Bond	==	
Triple Bond	=	High

Only one pair of electrons holding the nuclei together

Two pair of electrons hold the nuclei tighter and closer

=

Bond Energy & Bond Lengths

<u>Bond</u>	<u>Length</u> (picometers)	Energy (kJ/mol)
H-Br	141	366
H-C	109	413
H-N	101	391
H-0	96	464
H-5	93	339
С—О	143	360
C=O	129	799
С—С	154	348
C=C	134	614
СС	120	839
0-0	148	145
O=O	121	498
N-N	145	170
N=N	125	418
NN	110	945

Lewis Structures in Covalently Bonded Molecules & HONC Rule

pgs. 183 - 186

Drawing Lewis Dot Structures for Molecules

- arrange atoms to form a skeleton
 - -Carbon is center atom
 - -Hydrogen is never a central atom
 - Pair up all electrons
 - unpaired electrons can pair unpaired electron from another atom to form a bond
- •Make sure each atom of the molecule obeys the octet rule & HONC rule
- Make sure you have correct # of valence electrons

Examples of Lewis Dot Structure

Multiple Covalent Bonds: <u>Double bonds</u>

Two pairs of shared electrons

$$O_2:$$
 $O_2:$
 $O_2:$

each oxygen
has 8 electrons
in the valence shell

Multiple Covalent Bonds: Triple bonds

Three pairs of shared electrons

Molecular vs. Structural Formulas

- Molecular formulas show how many atoms of each element are in the molecules
 - Ex: $C_6H_{12}O_6$ = 6 carbons, 12 hydrogens & 6 oxygens
- <u>Structural formulas</u> show the 2-dimensional shape of the molecule
 - Ex:

HONC 1-2-3-4 Rule

- Hydrogen, oxygen, nitrogen & carbon are common elements found in biological molecules.
 - Hydrogen needs 1 electron to fill its "octet"
 - Oxygen needs 2 electrons to fill its octet
 - Nitrogen needs 3 electrons to fill its octet
 - Carbon needs 4 electrons to fill its octet
- "1-2-3-4" can be used to predict how these atoms will form bonds with other atoms to build molecules.

Molecular Geometry Seeing Molecules in 3-D

Molecular Geometry molecules are really 3-D!

CH₄ in 2-D on a sheet of paper

Н Н:С:Н Н CH₄ looks like this in 3-D

Valence Electrons determine Molecular "VSEPR" Shape

- VSEPR = "Valence-Shell Electron Pair Repulsion"
- Electron pairs (bonding or lone pairs) in a molecule repel each other and will try and get as far away from each other as possible... this determines the shape.

Lone pair electrons

H: N:H

bonding pair electrons

H

NH₃ in 2-D

NH₃ VSEPR shape in 3-D

4 Shapes to Know

Tetrahedral

Pyramidal

Bent

Linear

How Lone Pairs Affect Molecular Shape

"paddles" are lone pairs of electrons.

Remove the paddles and you can see the shapes.

tetrahedral pyramidal

bent

linear

Steps for Determining Molecular Geometry

- 1. Draw Lewis dot structure
- 2. Count number atoms bonded to the central atom
- Count number of lone-pair electrons on the central atom
- 4. Look up the Geometry on the chart

Shapes in Large Molecules

Large molecules are composed of the small shapes we've studied

Ex: tetrahedral

ball-and-stick model of citronellol

Why Shape Matters

Ethyl Acetate $(C_4H_8O_2)$ Butyric Acid $(C_4H_8O_2)$

Same formula, but different shapes = very different smells

Rum extract smell

Rancid butter smell

Polarity

Differences In Electronegativities

Practice Problems

Bonding Between:	Difference in Electronegativity	Bond Type
Cl & Ca	3.0 - 1.0 = 2.0	lonic
0 & H	3.5 - 2.1 = 1.4	Polar-covalent
B & H	2.0 – 2.1 = 0.1	Nonpolar- covalent

2 types of Covalent Bonds:

Non-Polar

- -Electrons are shared equally
- Usually the same element bonded to itself

"partial positive charge"

"partial negative charge"

- Unequal sharing of electrons between atoms
- more electronegative atoms "hogs" electrons

Visual Comparison of Bond Types

Determining Polarity

- 1. Draw correct VSEPR Shape
- 2. Determine if molecule is symmetrical.
- 3. If the molecule is symmetrical = non-polar
 - no partial charges are needed!
- 4. If the molecule is NOT symmetrical = polar
 - you must show partial charges.
 - always bent or pyramidal shapes

Linear shape (symetrical)

Bent shape (assymetrical)

Ex: CO₂

- Carbon dioxide= nonpolar
- · has polar bonds, but they cancel each other out.

EX: Water= Polar Molecule

How we know:

- Cut the molecule on
 planes
 - see how it's
 different above the
 horizontal line = non
 symmetrical
- 1) One atom is "pulling", look at periodic table to determine which one.

Indicates which atom "pulls" the electrons

5— Means oxygen is slightly negative because it "hogs" electrons

2 views of Polar water

Non Polar Molecules

- Non Polar molecule= "no pull"
 - equal sharing of electrons
 - No difference in electronegativity
 - symmetrical in shape

Examples of Polar & Nonpolar Molecules

Electronegativity

				_	-												
			0.5 - 0.5	9	2	5-29											
1	2		1.0 - 1.	4	3.0 - 3.5						3	4	5	6	7	8	
	ı		1.5 - 1:	9	3.6 - 3.9					(13)	(14)	(15)	(16)	(17)	(18)		
2.1			2.0 - 2	A	4.0+										He		
LI	Be											В	С	N	0	F	Ne
1.0	1.6											2.0	2.5	3.0	3.5	4.0	
Na	Mg	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	Al	Si	P	S	CI	Ar
0.9	1.3											1.6	1.9	2.2	2.5	3.0	
0.8	1.3	1.4	1.5	1.6	1.7	1.6	1.8	1.9	1.9	1.9	2n 1.7	1.6	2.0	2.2	2.6	2.8	Kr
Rb	Sr	Y	Zr	NIb	Mo	To	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
0.8	1.0	1.2	1.3	1.6	2.2	2.1	2.2	2.3	2.2	1.9	1.7	1.8	2.0	2.1	2.1	2.7	2.6
Cs	Ba	La	Hr	Ta	W	Re	Os	lr _	Pt	Au	Hg	TI	Pb	ВІ	Po	At	Rn
0.8	0.9	1.1	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	2.0	2.3	2.0	2.0	2.2	
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
0.7	0.9	1.1															

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Inter vs. Intra molecular Forces

Why Polarity Matters: Molecular Attractions

- 1 molecule can be attracted to another molecule
 - "inter"molecular force
- You can predict how one molecule might react with another: Ex: HBr + H₂O

Intermolecular Attractions & Smell

- Besides shape, polarity also plays a role in your ability to smell.
 - Polar molecules = smell
 - Non-polar = don't smell
- Your smell receptors are polar and surrounded by mucous (a watery substance)

Ex: Methane gas is odorless

odorless

h

-They add a this stinky chemical to it so that you can smell it it:

Intermolecular Forces vs. Intramolecular Forces

Intramolecular Forces:

(within in a molecule)

Ex: -Covalent bond

- Ionic bond
- -Metallic bond

Intermolecular Forces:

(between molecules)

Ex: Hydrogen bonds

-Weaker than covalent, ionic, & metallic bonds

Hydrogen Bonding-(an intermolecular force) in Water

- Water is polar
 - (has a + and end)
 - It's "sticky"
- Will stick to any other thing that is:
 - polar (ex: other water molecules)
 - charged ionic
 substances (NaCl)

Water's Polarity leads to its ability to dissolve things so well

The slight charges on water attract the NaCl's ions and cause them to separate from each other

Unique Properties of Water due to polarity & hydrogen bonding

1) <u>Surface tension</u> (hydrogen bonds create surface on water)

3) Adhesion/ Cohesion (water is attracted to other water molecules)

4) Capillary action water is attracted to other water molecules and will "rise"

Properties of Water due to Hydrogen Bonding & Polarity

- <u>Cohesion</u> water molecules are attracted to one another
 - Causes water to be "Sticky"
 - This is why water forms droplets
- Adhesion water is attracted to other substances
 - Water will "stick" to containers & objects
- Surface tension strong forces between molecules cause the surface of a liquid to contract

More properties...

 <u>Capillary Action</u> - the movement of water within the spaces of a porous material due to the forces of adhesion, cohesion, and surface tension.

Slightly positive hydrogen are attracted to chlorine anions

Slightly negative oxygen are attracted to sodium cations

Hydrogen Bonding in Kevlar

Hydrogen bonding in Kevlar, a strong polymer used in bullet-proof vests.

Hydrogen Bonding in DNA

Other Intermolecular Forces (FYI... not part of this class)

- Van der Waals Forces include:
 - Dipole-Dipole forces results from the
 tendency of polar
 molecules to align
 themselves so that the
 positive end of one
 molecule is near the
 negative end of another
 molecule.
 - London (Dispersion)
 forces -results from the
 small, instantaneous
 dipoles that occur
 because of the varying
 positions of the electrons
 during their motion about
 nuclei

Organic Chemistry

Organic Chemistryshows the versatility of carbon

- has 4 valence electrons =4 bonding spacesavailable.
- Backbone to many large, complex biological molecules (Carbs, Lipids, Proteins, Nucleic Acids)
- Over 16 million carboncontaining compounds are known.

Monomers combine to make <u>Polymers</u> (small unit) (large)

Common Examples of Polymers:

- > Carbohydrates
- >Lipids
- >Proteins
- >Nucleic Acids

(CLPN)

Ex: Carbohydrates

Examples

- Starch
- Fiber
- sucrose

Ex: Lipids

Monomers

Polymer

Tri-glyceride

Glycerol & Fatty

tails

Examples

- -Saturated **Fats**
- -Unsaturated fats
 - -Steroids
 - -Cholesterol

Ex: Proteins

Polymer Monomer **Examples** -enzymes Amino Acids <u>Poly</u>peptide -pigments -Meat/dairy OH

Monomer

Polymer

Examples

Nucleotide

Polynucleotide

-DNA

-RNA

Distilled Water vs. Tap Water

Water Poisoning/water Intoxication

<u>Cause:</u> excessive consumption of water during a short period of time.

Why: leads to a disruption in normal brain function due to the imbalance of <u>electrolytes</u> in the body's fluids.

 can dilute the careful balance of <u>sodium</u> compounds in the body fluids

Who: individuals in water drinking contests...consume more than 10 liters (10.5 quarts) of water over the course of just a few minutes

 People doing endurance sports which electrolytes are not properly replenished, yet massive amounts of fluid are still consumed

Neural transmission

Electric Stimulation Machinestimulates muscles for you

See video clips on web links